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Abstract. The success of Deep Neural Networks (DNNs) in a wide array of applications comes along
with significant computation and parameter storage costs. Recent efforts to reduce these overheads
involve pruning and compressing the weights of various layers, while aiming at the same time to not
sacrifice performance. These processes typically involve extensive fine-tuning procedures after pruning
for recovering model performance lost in the process. In this paper, we propose the “relevance” quantity
from Layer-wise Relevance Propagation (LRP) as a novel criterion for DNN pruning, inspired by
neural network interpretability: by exploring this idea, we connect the lines of interpretability and
model compression research. We show that our proposed method can efficiently prune DNN models in
transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks.
Notably, our novel criterion clearly outperforms previous criteria in resource-constrained settings, where
reference samples for criterion computation are very scarce and one chooses to refrain from fine-tuning.
At the same time, it has a computational cost in the order of gradient computation and is comparatively
simple to apply without the need for the tuning of pruning hyperparameters.

Keywords: Neural Network Pruning - Layer-wise Relevance Propagation - Deep Neural Networks
(DNN) - Explainable AT (XAI)

1 Introduction

Deep DNNs have become an invaluable tool for a wide range of applications (cf. [9]). In specialized domains
where limited training data is available, transfer learning can improve the CNN performance in the target
domain by providing a priori knowledge from domain-related source tasks.

However, the high predictive performance of DNNs often comes at the expense of significant computational
and storage costs for inference steps and model parameters respectively, which are related to the energy
expenditure of the transfer-learned network: contemporary neural network architectures are composed of
millions of parameters to be trained, often leading to overparameterization of the model [7]. Reducing a
model’s storage requirements and computational cost becomes critical for a broader applicability, e.g., in
embedded systems, autonomous agents, mobile devices, edge devices or simply for the private practitioner
without access to powerful computational infrastructure [34]. Neural network pruning has a decades long
history with interest from both academia and industry [6] aiming to eliminate the subset of the network
elements which is the least important w.r.t. the network’s intended task. For network pruning, it is necessary
to choose how to identify the “irrelevant” subset of the parameters. To address this issue, previous work has
proposed specific criteria based on e.g. weight statistics, gradient, Taylor expansion, and others, to reduce
complexity and computational costs in the network.

From a practical point of view, the full capacity of an overparameterized model may not be required for
successful usage of the model, e.g., when (1) parts of the model do not participate in the decision computation
(i-e., are “switched off”), (2) a user is not interested in the model’s full array of possible outputs, which is a
common scenario in transfer learning or (3) a user lacks data and resources for effectively fine-tuning the
overparameterized model. In these scenarios the redundant parts of the model will occupy memory resources,
and functionally idle parts of the model will consume energy and increase runtime in operation.

In this paper, we propose a novel and resource efficient pruning framework based on LRP [4]. LRP was
originally developed as an explanation method to assign importance scores, so called relevance, to the different
input dimensions of a neural network that reflect the contribution of an input dimension to the model’s
decision. The method has been applied successfully to different fields of computer vision (e.g., [T9TTI29]).
Relevance is backpropagated from the output to the input, layer-by-layer, and hereby assigned to each element
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Fig.1: (I): Our approach assumes the availability of well-performing DNN models pre-trained on a general
and diverse large scale dataset (here with classes A to F') such as ImageNet. (II): The proposed method aims
at transferring a pre-trained model to a specialized and related data domain (A’ and B’) via the removal of
filters from the initial model. We compute relevance scores with LRP, based on a low number of reference
samples from the target domain, in order to estimate the importance of all model elements required for a good
solution in the target domain. (II1): Finally, the least important model elements (e.g. filters and neurons) are
pruned from the model until some threshold (e.g. model performance on the target domain, computational
cost or memory footprint) is reached.

of the deep model. Relevance thus reflects the importance and contribution of each network element to the
information flow through the network, yielding a natural candidate to be used as a criterion for pruning.
The LRP criterion is motivated theoretically through the concept of Deep Taylor Decomposition (DTD)
(c.f. [2728]), and practically in its robustness to shattered gradients [28] affecting very deep DNNs. Moreover,
LRP is scalable and easy to apply, has been implemented in ready to use software frameworks, e.g. [I], and
has a computational cost similar to gradient backpropagation.

It has been observed that LRP scores of feature maps contain information about the model beyond the
identification of prediction biases. [3] computed weighted combinations of word2vec embeddings of words to
summarize text corpora. They compared several approaches to obtain weights and showed that using LRP
to weight features results in an improved separation in the first principal components. [31] demonstrated
that re-weighting CNN features using LRP scores, and using them in explanation-guided training yields
an improved prediction accuracy in a few-shot learning setup. This improvement was also synergistic when
combined with the learned feature transform [33] which is another approach to improve few-shot predictors.
In this work we consider an application scenario using pruning instead of soft weighting.

We evaluate the compression efficacy of the LRP criterion, in a heavily resource-constrained model
specialization and domain adaptation setting, where large quantities of reference data for computations are
not available and fine-tuning is prohibited, e.g. due to the computational cost involved or the mentioned lack
of sample size. Here a pre-trained model needs to be transferred to a related, yet specialized target problem
and domain. Such transfer learning with restrictions is common in mobile or embedded applications. Our
approach aims at adapting the predictor function via the removal of model elements. We outline our proposed
pruning procedure for efficient and effective domain adaptation in Figure [I} Our experimental results on two
different popular DNN architectures and four domain adaptation tasks show that the proposed LRP criterion
for pruning leads to considerably better performing models than other criteria from recent literature.

2 Related Work

Network pruning approaches remove redundant or irrelevant elements from the model which are not critical for
performance [6l24]. Network pruning is robust in various settings and gives reasonable compression rates while
not (or minimally) hurting the model accuracy, and can support transfer learning from pre-trained models,
however often requiring a computationally expensive fine-tuning component (e.g. [I3I25]). All approaches
however require an appropriate criterion for the identification of elements not relevant for the model’s problem
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solving capabilities in order to perform well. In the recent past, proposed pruning criteria and literature have
repeatedly been based on the magnitude of the models’ (1) weights, (2) gradients, (3) and Taylor expansions.
Weight-based pruning: An established approach is to prune redundant, non-informative weights in pre-
trained DNN models, based on the magnitude of the weights themselves. The works of [I3] and [12] proposed
the pruning of weights of which the magnitude is below a certain threshold, and to subsequently fine-tune
with a [,-norm regularization. This pruning strategy has been used on fully-connected layers and introduced
sparse connections usable with BLAS libraries, supporting specialized hardware to achieve its acceleration.
In the same context, Structured Sparsity Learning (SSL) added group sparsity regularization to penalize
unimportant parameters by removing some weights [37]. The work of [21], which we compare against in our
experiments, proposed a one-shot channel pruning method using the [, norm of weights for filter selection.
Gradient-based pruning: [22] proposed a hierarchical global pruning strategy by calculating the mean
gradient of feature maps in each layer. They adopt a hierarchical global pruning strategy between the layers
with similar sensitivity. [32] proposes a sparsified back-propagation approach for neural network training
using the magnitude of the gradient to discern essential from non-essential features in Multi-Layer Perceptron
(MLP) and Long Short-Term Memory Network (LSTM) models, which can be used for pruning. We implement
the gradient-based pruning criterion after [32].

Taylor expansion-based pruning: Early approaches towards neural network pruning — optimal brain
damage [20] and optimal brain surgeon [14] — leveraged a second-order Taylor expansion based on the
Hessian matrix of the loss function to select parameters for deletion. However, computing the inverse of
Hessian is computationally expensive. The work of [25I38] used a first-order Taylor expansion as a criterion to
approximate the change of loss in the objective function as an effect of pruning away network elements. We
contrast our novel criterion to the computationally more comparable first-order Taylor expansion from [25].

3 Neural Network Pruning

Typically, feed-forward DNNs consist of neurons established in a sequence of multiple layers of neurons,
where each neuron receives the filtered and transformed input data from one or more previous layers and
propagates its output to every neuron in the succeeding layers, using a potentially non-linear activation
function. Network pruning aims to sparsify these elements by eliminating weights or filters that are rated
as non-informative or unimportant. We specifically focus our experiments on transfer learning, where the
parameters of a network pre-trained on a source domain are subsequently fine-tuned on a target domain, i.e.,
the final data or prediction task. The general pruning procedure frequently described in literature can be
outlined in the following series of steps:

(Step 1) Assess the importance of all network substructures w.r.t. a chosen criterion. (Step 1.1) If required
by the criterion, regularize, e.g. via ¢, normalization. (Step 2) Identify and remove the least important network
elements and substructures. (Step 2.1) Remove orphaned connections and elements. (Step 2.2) Optionally
fine-tune the pruned model to regain lost performance. (Step 3) Return the pruned network upon hitting
some threshold (e.g., model performance, size, or efficiency). Otherwise, continue iterating from (Step 1).

Although most approaches follow the process outlined above, a suitably chosen pruning criterion for rating
model elements (Step 1) for subsequent removal (Step 2) is critical in order to minimize the loss in model
performance and thus governing the success of the approach. In our experiments described later, we assume
the optional fine-tuning (Step 2.2) to be prohibited for lack of data and computational resources.

3.1 Relevance-based Pruning

In this paper, we propose the use of a relevance as a novel criterion for pruning neural network, as obtained
via the LRP [4] method. Initially designed as a method for explaining the prediction process of DNNs and
other types of models, LRP decomposes the output of a neural network into proportional contributions of
each input (and hidden) neuron to the final decision, in a layer-by-layer fashion. The property of relevance
conservation of LRP yields a direct connection from each (hidden) model component to the model output in
terms of their contribution to the final prediction. This makes LRP not only attractive for model explaining,
but also yields a naturally normalized pruning criterion.
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In our experiments, we specifically use the LRP,g rule with o = 1 and 8 = 0 in all layers as pruning
criterion, i.e.

(a(l)’wij)—i_
(O 2 : ’ (1+1)
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The terms ()+ indicate the positive part of the forward propagated pre-activation from layer [, to layer (I +1).
The 4’ is a running index over all input activations a(Y) of the current layer. Equation attributes a share of

R§l+1), the relevance assigned to neuron j of layer (I 4 1), as Rz(»l) to neuron i of downstream layer [. Note
that a choice of a = 1 only decomposes w.r.t. the parts of the inference signal supporting the model decision
for the class of interest. Above decomposition rule is also known as the LRP, rule [28] and is robust to
shattered gradients affecting gradient-based quantities in deep and complex (especially) ReLU-based DNNs.

Regarding the LRP Implementation for the ResNet, we apply a canonization step [10]. Since the LRP
scores are not implementation-invariant and depend on the LRP rules used for the batch normalization
(BN) layers, we convert a trained ResNet into a canonized version, which yields the same predictions up
to numerical errors. The canonization fuses a sequence of a convolution and a BN layer into a convolution
layer with updated weighteﬂ and resets the BN layer to be the identity function. This removes the BN layer
effectively by rewriting a sequence of two affine mappings into one updated affine mapping [I0]. The second
change replaced calls to torch.nn.functional methods and the summation in the residual connection by
classes derived from torch.nn.Module which then were wrapped by calls to torch.autograd.function to
enable custom backward computations suitable LRP rule computations.

In order to assess the global importance of a convolutional filter operating in multiple locations within
the same layer, we aggregate the total sum of relevance from its spatially distributed output neurons.

4 Experiments

We compare our proposed LRP-criterion to criteria based on (¢s-normalized) magnitudes of weight [21], gradi-
ent [32] and Taylor expansions [25] on two widely used DNN architectures popular in compression research [36]
in a heavily resource-constrained setting and the task of model specialization with simultaneous domain
(shift) adaptation. That is, we prune the ImageNet pre-trained networks VGG-16 [30] and ResNet-50 [15] to
solve a cats vs. dogs classification tasks [8] without subsequent fine-tuning. For all architectures, we download
parameters pre-trained on ImageNet (ILSVRC 2012) from the PyTorch model zoo.

For the computation of the pruning criteria, we only allow 10 training samples to be used from each of
the “cat” and “dog” classes. The binary classification (i.e. “cat” vs. “dog”) is a subtask within the ImageNet
tazonomy and corresponding output neurons can be identified by its WordNe1E| associations. After each step
of pruning, we compare the performance of the models pruned based on our proposed criterion to those
pruned with other criteria. Note that we compute the pruning criteria only once for the initial unpruned
model state, and progressively remove filters based on this data. To the best of our knowledge, there are no
previous studies that compare the performance of pruning approaches when acting based on very limited
amounts of reference data and computational resources.

Each pruning step constitutes a removal of 5% of all initially present filters chosen via the pruning criteria
until a pruning ratio of 90% is reached. Thereafter, we continue the pruning procedure by removing filters in
1% steps (w.r.t. the initial filter count) until we reach a pruning ratio of 99%. We repeat this experiment
20 times, with different sets of reference samples selected randomly for criteria computation. In Figure
we report the post-pruning model performances on the target domain, the testing partition of the ASSIRA
dataset of cats and dog images as a function of convolutional filters removed (in percent).

As the pruning ratio increases, we observe that even without fine-tuning, only the proposed LRP-criterion
can maintain a stable test accuracy close to 100% test accuracy. The model performance on the target domain
even marginally improves from 0% to 10% filters pruned. Performance only drops to chance level above
pruning ratios of 96% for both models. In contrast, the performance decreases rapidly when pruning w.r.t

! See bnafterconv_overwrite_intoconv(conv,bn) in the file lrp_general6.py in https://github.com/
- AlexBinder/LRP_Pytorch_Resnets_Densenet
“ http://www.image-net.org/archive/wordnet.is_a.txt
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Fig. 2: Each panel shows a comparison of model performance as a function of filters pruned (in %) for a
pre-trained VGG-16 and ResNet-50, between our proposed LRP-based criterion and one competing criterion.
The mean accuracy over 20 repetitions of the experiment is shown as a solid line, surrounded by a shaded
area showing the standard deviation. In each repetition, we compute the pruning criteria from a different
set of only 10 reference samples per class. Following recent literature on neural network pruning, all criteria
(except for LRP) have been f3-normalized [25] to improve pruning performance.

the other criteria. Please note that there is no standard deviation across repetitions for the weight criterion,
as this quantity does not depend on reference samples. For the criteria gradient and Taylor however, we
observe considerable variability between pruning solutions obtained for the individual repetitions of the
experiment, and thus varying degrees of performance of the pruned models. We attribute the observed stability
and performance of our LRP criterion to its characteristic continuity, which is absent in both gradient and
Taylor expansion as gradient-based measures [28]. In some of the line plots (LRP on VGG-16, and weight
and gradient on ResNet-50), momentary decreases in model performance, followed by a recovery of lost
performance in subsequent pruning steps can be observed. This phenomenon only occurs in a small minority
of the repetitions of the described experiment. We nonetheless give an explanation of this anomaly: in DNNs,
one can not assume that individual filters or neurons encode learned concepts or features on their own, but
rather represent components of feature- and concept-defining directions of latent representations. By pruning
a fixed amount of filters, as we do in our experiment, some of those components are removed from the model,
potentially leaving rotated and noisy feature encodings behind. These (in the iterative pruning process)
temporarily disturbing encodings might negatively affect the overall model performance, until the respective
encodings have been removed completely. This observation made in context of our experiment provides for an
interesting aspect of DNN pruning, deserving of further investigation in a future line of research.

The ASSIRA dataset of cats and dogs may raise the concern that it is the MNIST analogue for pets,
representing a rather simple problem, and for that reason the results might not be transferable to problems
with larger variance. To validate our observation, we have chosen the more lightweight [5] ResNet-50 model,
and evaluated its pruning performance on three further datasets. Each of the three datasets is composed as a
binary discrimination problem obtained by fusing two datasets chosen from the following selection: FGVC
aircraft [23], CUB birds [35] and Stanford cars [18]. We have chosen these three datasets, as they are known
from the literature, have an intrinsic variability as visible by their numbers of classes and a medium sample
size. Most importantly, we know for these datasets that the object categories defining their contents are
matched by some classes in the ImageNet dataset which is used to initialize the weights of the ResNet-50
network.

Figure [ shows the results on the three composed discrimination problems. We can observe that each
pruning method is able to remove a certain amount of network filters without notable loss of discrimination
performance. Weight-based pruning performs second best, while LRP-based pruning allows consistently to
prune the largest fraction of filters before starting to lose prediction accuracy.

When comparing cats versus dogs in Figure [2] against the three composed datasets in Figure [3] we observe
that there is less redundant capacity which can be pruned away for the composed datasets. This sanity check
is in line with the higher variance of these composed datasets as compared to cats versus dogs. As a side
remark, this observation suggests the thought to measure empirically dataset complexities with respect to a
neural network by the area under the accuracy graph with respect to the amount of pruned filters.
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Fig. 3: Comparison of pruning performance for a ResNet-50 network across different datasets when pruned by
criteria using weights, gradient, Taylor-expansion and LRP. Each dataset is a binary classification problem
created by combining two datasets taken from FGVC Aircraft [23], CUB-200-2011 birds [35] and Stanford
Cars [18]. Results are the average of 20 repetitions with randomly drawn samples. Each run relies on 20
samples for pruning, 10 from each of the two datasets, and 2048 samples for test accuracy evaluation. For a
given repetition, all methods are pruned and evaluated on the same set of samples.

5 Conclusion

In this paper, we have proposed a novel criterion the one-shot pruning of DNNs based on the explanation
method LRP, linking the the lines of interpretability and compression research. LRP has a clearly defined
meaning, i.e. the contribution of an individual network element, to the network output. Removing elements
according to low LRP scores thus means discarding all aspects in the model that do not contribute relevance
to its decision making.

Our experiments demonstrate that the novel LRP criterion consistently outperformed the compared other
criteria across various model architectures. It is especially noteworthy, that our evaluated LRP-based criterion
is able to maintain a good performance of the pruned model, without fine-tuning and only very little reference
data. We refer to this as one-time criterion pruning because even if the pruning is performed in iterations,
the LRP criterion for neurons is computed only once. This renders the complete process of pruning from a
general to a more specific model extremely attractive, especially considering the low computational effort
involved. In this context, LRP is comparable to the Taylor expansion and gradient criteria, requiring both a
forward- and backward pass for assessing network structure importance. While the weight criterion is “free”
for a given model. However, its performance falls behind LRP in all of our results. Unlike the competing
criteria, LRP does not require further regularization in order to yield excellent performance [25], as it is
naturally normalized via its relevance conservation principle [4].

However, the proposed criterion still leaves several open questions that deserve a deeper investigation in
future work. First of all, LRP is not implementation invariant [26l2], i.e., the structure and composition of
the network function to prune affects the computation of the LRP-criterion. Network canonization, i.e. an
adaptation of the network structure resulting in a modified predictor [I6JI0] which however is functionally
equivalent [2] to the original, might be required for optimal results in arbitrary model architectures. Further,
the pruning results might change based on the chosen LRP wvariant (cf. [I7]). In this paper, we have chosen
one particular parameterization applied to all layers of the model, that is robust to gradient shattering effects
known to occur in very deep DNN. However, existing literature provides [I] or suggests [IIIT9/I7] alternative
purposed parameterizations, providing interesting material for future research directions in context of neural
network pruning.
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